Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Biol Direct ; 17(1): 36, 2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2139383

ABSTRACT

BACKGROUND: The major histocompatibility complex (MHC) and the killer cell immunoglobulin-like receptors (KIR) are key regulators of immune responses. The cynomolgus macaque, an Old World monkey species, can be applied as an important preclinical model for studying human diseases, including coronavirus disease 2019 (COVID-19). Several MHC-KIR combinations have been associated with either a poor or good prognosis. Therefore, macaques with a well-characterized immunogenetic profile may improve drug evaluation and speed up vaccine development. At present, a complete overview of the MHC and KIR haplotype organizations in cynomolgus macaques is lacking, and characterization by conventional techniques is hampered by the extensive expansion of the macaque MHC-B region that complicates the discrimination between genes and alleles. METHODS: We assembled complete MHC and KIR genomic regions of cynomolgus macaque using third-generation long-read sequencing approach. We identified functional Mafa-B loci at the transcriptome level using locus-specific amplification in a cohort of 33 Vietnamese cynomolgus macaques. RESULTS: This is the first physical mapping of complete MHC and KIR gene regions in a Vietnamese cynomolgus macaque. Furthermore, we identified four functional Mafa-B loci (B2, B3, B5, and B6) and showed that alleles of the Mafa-I*01, -B*056, -B*034, and -B*001 functional lineages, respectively, are highly frequent in the Vietnamese cynomolgus macaque population. CONCLUSION: The insights into the MHC and KIR haplotype organizations and the level of diversity may refine the selection of animals with specific genetic markers for future medical research.


Subject(s)
COVID-19 , Humans , Animals , Major Histocompatibility Complex/genetics , Receptors, KIR/genetics , Macaca , Genomics
2.
Front Immunol ; 13: 954121, 2022.
Article in English | MEDLINE | ID: covidwho-2022737

ABSTRACT

Although tremendous effort has been exerted to elucidate the pathogenesis of severe COVID-19 cases, the detailed mechanism of moderate cases, which accounts for 90% of all patients, remains unclear yet, partly limited by lacking the biopsy tissues. Here, we established the COVID-19 infection model in cynomolgus macaques (CMs), monitored the clinical and pathological features, and analyzed underlying pathogenic mechanisms at early infection stage by performing proteomic and metabolomic profiling of lung tissues and sera samples from COVID-19 CMs models. Our data demonstrated that innate immune response, neutrophile and platelet activation were mainly dysregulated in COVID-19 CMs. The symptom of neutrophilia, lymphopenia and massive "cytokines storm", main features of severe COVID-19 patients, were greatly weakened in most of the challenged CMs, which are more semblable as moderate patients. Thus, COVID-19 model in CMs is rational to understand the pathogenesis of moderate COVID-19 and may be a candidate model to assess the safety and efficacy of therapeutics and vaccines against SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19 Vaccines , Humans , Macaca fascicularis , Proteomics
3.
Mol Ther ; 30(9): 2952-2967, 2022 09 07.
Article in English | MEDLINE | ID: covidwho-1860155

ABSTRACT

The COVID-19 pandemic continues to have devastating consequences on health and economy, even after the approval of safe and effective vaccines. Waning immunity, the emergence of variants of concern, breakthrough infections, and lack of global vaccine access and acceptance perpetuate the epidemic. Here, we demonstrate that a single injection of an adenoassociated virus (AAV)-based COVID-19 vaccine elicits at least 17-month-long neutralizing antibody responses in non-human primates at levels that were previously shown to protect from viral challenge. To improve the scalability of this durable vaccine candidate, we further optimized the vector design for greater potency at a reduced dose in mice and non-human primates. Finally, we show that the platform can be rapidly adapted to other variants of concern to robustly maintain immunogenicity and protect from challenge. In summary, we demonstrate this class of AAV can provide durable immunogenicity, provide protection at dose that is low and scalable, and be adapted readily to novel emerging vaccine antigens thus may provide a potent tool in the ongoing fight against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2).


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Dependovirus/genetics , Humans , Macaca , Mice , Pandemics/prevention & control , SARS-CoV-2/genetics
4.
Toxicol Pathol ; 50(5): 591-606, 2022 07.
Article in English | MEDLINE | ID: covidwho-1807928

ABSTRACT

Cynomolgus macaques (Macaca fascicularis) are commonly used in safety assessment and as translational models for drug development. Recent supply chain pressures, exportation bans, and increased demand for drug safety assessment studies exacerbated by the COVID-19 pandemic have prompted the investigation of utilizing macaques of different geographic origin in preclinical toxicity studies. This study compares routine hematology, coagulation, and clinical chemistry endpoints of 3 distinct subpopulations of mainland Asia origin (Cambodia, China, and Vietnam) with Mauritius origin macaques compiling results of 3,225 animals from 123 regulatory toxicology studies conducted at North American and European Union contract research organization facilities between 2016 and 2019. Results were generally similar amongst the subpopulations compared in this study. Few notable differences in hematology test results and several minor differences in serum biochemistry and coagulation test results were identified when 3 distinct subpopulations of mainland Asia origin macaques were compared with Mauritius origin macaques. Our findings support the use of different origin macaques in drug development programs; however, emphasizes the importance of maintaining consistency in geographic origin of animals within a study.


Subject(s)
COVID-19 , Hematology , Animals , Blood Coagulation Tests , Cambodia , Chemistry, Clinical , Humans , Macaca fascicularis , Mauritius , Pandemics , Vietnam
SELECTION OF CITATIONS
SEARCH DETAIL